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Abstract. The low-density expansion and a new integral equation have been used to calculate 
the pair correlation function and several related quantities for krypton, using realistic pair 
potentials and several models for the three-body potential: the Axilrod-Teller-Muto model, 
the multipolar model up to the triple quadrupole term and the Loubeyre model. The results 
are compared with experimental data in some detail. The models describe the three-body 
effects in correlation functions in a qualitative sense, but quantitative differences are 
observed, suggesting that shorter-ranged effects must also be included. 

1. Introduction 

Recent progress in the study of simple fluids has brought us to the point where the role 
of many-body forces must be discussed in detail. In this paper we shall employ several 
models to discuss the magnitude of effects involving three-body forces for states far from 
the critical point. Then we shall compare our results with experimental data on the static 
structure factor of krypton at room temperature and over a wide range of densities. This 
function is used because, through its dependence on wavevector, it allows a more 
sensitive test than that for bulk properties alone. In addition, as it is the Fourier transform 
of the pair correlation function, it has a simple physical interpretation. 

We consider first the change in the pair correlation function at low densities for 
three different models of the three-body potential, and subsequently compare these 
predictions with experimental results. The models are the triple dipole (DDD) potential 
(Rice and Gray 1976), the multipole expansion (Rice and Gray 1976) up to the triple 
quadrupole term and a short-range model combined with the DDD term. Then we 
consider the same models at higher densities up to several times the critical density and 
show their variation with wavevector, and their comparison with experiment. We shall 
employ several methods qf calculation. These include numerical integration of analytical 
formulae at low density, the use of a new modified hyper-netted chain (CRS-MHNC) theory 
over a range of densities including high densities, and in some instances molecular 
dynamics simulations. The krypton pair potentials due to Barker and to Aziz will be 
used also. A special effect beyond the simplest models of many-body effects is the 
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variation of the position of the principal peak in the structure factor with density. 
Predictions and observations of this effect will be presented as well. 

The direct correlation function is often considered in the literature because it is 
simply related to the structure factor and has some simpler properties. Thus we display 
the full density and wavenumber dependence of our models and their comparison with 
experiment through this function. In addition, we plot the difference between the direct 
correlation functions (theoretical and experimental), as this difference is most closely 
related to the three-body potential term. Finally we make such comparisons for krypton 
at a lower temperature. Thus we shall use one of four presentations as most appropriate, 
namely the structure factor S(k)  itself, or the difference AS(k)  between theory and 
experiment, or the direct correlation function c (k )  or finally the difference Ac(k)  
between theory and experiment. 

The object of this programme has been to combine the available theoretical and 
experimental results in a single comprehensive analysis of many-body problems in fluids. 
It is clear that accurate predictions for model potentials are available and that they do 
not agree wholly with the experimental data, although they do cover many of the general 
features adequately. Thus the present models need improvement in some cases to 
describe current data adequately, and this will be discussed in our conclusions. Our work 
suggests, also, that additional experimental data for the isothermal compressibility and 
for the structure factor would be worth while. 

2. Model potentials 

We have used for u2 (1,2) the empirical pair potentials derived by Barker et a1 (1974) 
and by Aziz (1979) or Aziz et a1 (1986). For the three-body potential we will assume 
three different models: 

(a) The ‘long-range’ (Axilrod and Teller 1943, Muto 1943) triple dipole, given by 

v ( 1  + 3 cos 0 1  cos 0 2  cos 03) 
u3(1, 2 ,3)  = 3 3 3  

r12r23 ?‘13 

where v = 220.4 x 

the triple quadrupole given by Doran and Zucker (1971) and Bell (1970): 

erg cm9. 
(b) The ‘long-range’ potential with all the terms of the multipolar expansion up to 

U3(1,2,3) = Z(DDD)3W(DDD)3 + Z(DDQ)3W(DDQ)3 

with 

1 + 3 cos 0 1  cos 0 2  cos 0 3  
W(DDD)~ = 3 3 3  3r12r23r13 
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Table 1. Interaction constants for a triplet of Kr atoms (from Doran and Zucker 1971)--see 
equation (2) in the text. 

~ ( D D D ) ,  = 73.47 x erg cm9 
~ ( D D Q ) ,  = 8097 x lo-'"' erg cm'l 
Z(DQQ), = 8761 X 10-"* erg cmI3 
Z(QQQ), = 94926 X erg ~111'~ 

Table 2. Values of the constants in the Loubeyre (1987) formula-see equation (3) in the 
text. 

v = 220.4 x 
A = 7.4866 x lo-* erg 
(Y = 1.546 x lo8 cm-' 

erg cm9 

+ 20 cos(@, - Q2)(1 - 3 cos 2Q3) + 70 cos 2(Q1 - (P2) cos Q3] 

15 
W(QQQ)3 = 128r5 rj y j  (-27 + 220 COS @p1 COS @ 2  COS 0 3  

12 23 13 

+ 490 cos 2Q1 cos 2Q2 cos 2Q3 
+ 175[cos 2(Q1 - Q2)  + cos 2(Q2 - Q 3 )  + cos 2(Q3 - Q1)]}. 

(c) The 'short-range' exponential potential plus the Axilrod-Teller triple dipole 
The values for the 2 numerical factors in equation (15) are given in table 1. 

recently used by Loubeyre (1987), and given by 

u3(1, 2, 3) = {v(d2&r:3)-1 - A  exp[-a(r12 + 1'23 + r13)1} 

x (1 + 3 cos @1 cos @ z  cos @ 3 ) .  (3) 
In the previous formulae the QL are the angles of the triangle formed by r,, i = 1 , 2 , 3 .  
The values of the numerical constants v ,  2, A and a are given in table 2. 

The first potential is often employed in the literature for the representation of three- 
body irreducible forces in fluids; the second one is a refinement of the first one, which is 
useful for example for the description of the third virial coefficient of gases (Barker 
1986); while the third model has been found to give a good account of very high-density 
thermodynamic properties of noble gases and is also the first model that explicitly takes 
into account short-range three-body irreducible forces. 

3. The low-density region 

3.1. Low-density theory 

Let us consider a low-density gas composed of N atoms contained in a volume V ;  if the 
total interaction energy U( 1, . . . , N )  can be cluster-expanded as 

U(1, , . . , N )  = u2( i ,  j )  + 2 u3(i , j7 k )  + . . . (4) 
1'1 r > j > k  

where u 2 ( i 7 j )  is the interaction potential of the isolated pair (i, j )  and u3(i, j ,  k )  is the 
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irreducible part of the potential of the isolated triplet ( i , j ,  k ) ,  then the pair distribution 
function g(rlz), referred to a generic pair (1,2), can be series-expanded as a function of 
the density n ,  i.e. (Rice and Gray 1976) 

dr12) = gn(ri2) + ngi(riz) + o(n2> ( 5 )  

where 

Here, atoms 1 , 2  and 3 describe a triangle whose sides are rI2 ,  r13 and rz3 respectively. In 
the last equations f(y12) = g,(r12) - 1 is the Mayer function and g ,  (r12) indicates the 
part of g, (r12)  that depends only on the two-body potential while gr3)(r l2)  depends also 
on the three-body one. 

It is worth mentioning that the series expansion with respect to the density n has a 
different radius of convergence no for each value of r12, with no decreasing to zero as 
r12+ x ,  therefore requiring some care. In particular one should, in principle, know at 
least the size of the n2 term in equation (5) before approximating the sum of equation 
(5) by the first two terms. Here we will not discuss the n2 term of equation (2) because 
its calculation even for a pure two-body potential is cumbersome. 

The neutron scattering structure factor S(k)  is related to the pair distribution function 
by a Fourier transformation, i.e. 

( 2 )  

S ( k )  = 1 + n [ g ( r I 2 )  - 11 exp( -ik r12) dr12. (10) J 
Therefore from equations (2) and (7) also S(k)  can be represented as a series expansion 
with respect to the density n.  In particular it is convenient to refer to the function H ( k )  = 
[S (k )  - l]/n, and the Ornstein-Zernike direct correlation function c(k)  = H ( k ) / S ( k ) .  
From equations (5) and (10) we have 

c (k )  = c , ( k )  + nc,(k) + O(n2) 

H ( k )  = H , ( k )  + n H i ( k )  + O(n2)  

where 
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H l ( k )  = H p ) ( k )  + Hi3)(k) 

c l ( k )  = ci2’(k) + cj3’(k) 

with 

Hr2)(k) = j g i 2 ) ( r 1 2 )  exp(ik. r12)  dr12 = [HO(k ) l2  + cr2’(k) 

X exp(ik r12)  dr12 dr13 

and 

H ( : ) ( k )  = j g r 3 ) ( r l 2 )  exp(ik r12)  dr12 = ci3’(k).  (16) 

In a similar way to equation ( 5 ) ,  the series expansion (11) has a different radius of 
convergence nh for each k value, with n; becoming smaller when k + 0. Equations (6) 
to (9) offer the possibility of calculating the first two terms of the series expansion of 
g(r12) and in particular the two parts of gl(r12) which depend on the two-body potential 
and also on the three-body one respectively. In order to understand whether it is possible 
to measure the part of g(r12) related to the three-body otential, it is important to 

The computer calculation of the integrals in equations (8) and (9) gives this possibility 
once a model is chosen for the two-body potential u2(1, 2) and the three-body potential 
u3( l ,  2,3).  Such calculations using the Barker potential for u2 and the Axilrod-Teller 
potential for u3 were reported by Teitsma and Egelstaff (1980) and by Egelstaff et al 
(1980). A computer program that evaluates the integrals (7) to (9) and their Fourier 
transforms has been reported by Ram et a1 (1982), and some examples given. We have 
developed our own program for the computation of these quantities. In addition we 
have also deduced co(k) ,  c‘:)(k) and cj3)(k)  from the solution at very low density of the 
integral equation, which is discussed in the next section and which is exact to linear order 
in the density. 

calculate the relative size of gO(rl2) and ngl(r12) and of gl  (53 ( r 1 2 )  compared to gi2)(r12). 

3.2. Low-density results 

The integrals in equations (8) and (9) were evaluated with a careful analysis of their 
convergence. Figure 1 gives the behaviour of the contribution of g, and gj3) for the three 
different three-body potentials we have used in the calculations when u2 is the Barker 
potential. The introduction of other multipolar contributions in u3, besides the triple 
dipole one, slightly increases the negative peak of gj3) while the introduction of the 
exponential part of Loubeyre drastically decreases the negative peak of gi3) by approxi- 
mately a factor 2 and makes the contribution less soft than in the other cases, shifting 
slightly its effective hard core. 

We have calculated also, by means of a simple Fourier transform, the correction to 
the low-density structure factor, i.e. the functions Hi2’(k) and Hi3’(k).  For Hi2) and 
Hj3) the different behaviour is more evident at low k-values where it is mainly determined 
by the opposite value and different size of the zero moments of g? andgi3) respectively. 
Figure 2 shows ci3) (or Hi3’) in the three cases at T = 297 K. Here we see that when the 
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Figure 1. (a) The first density correctionsg,‘2’(r) (broken curves) andg,(r) = g,’2j(r) + gj3’(r) 
(full curves) to g(r )  for the Barker plus DDD interaction at two temperatures. ( b )  The three- 
body contributiongi3’(r) at T = 297 K for the Barker u2  and different models of 4:  DDD (full 
curve), DDD + DDQ + DQQ + QQQ (broken curve) and Loubeyre model (chain curve). 
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Figure 2. Three-body contribution cj3’(k) to the 
first density correction to c(k)  at T = 297 K.  Sym- 
bols are as in figure l (b) .  Crosses represent an 
estimation of ci3’(k) from ~ ( k ) ~ ~ , ~  - ~ ( k ) , , ~ ~  as dis- 
cussed in the text. 
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Figure 3. The function g(r) for krypton at T = 
297 K and n = 13.84 atoms/nm3 for HFGKR pair 
potential (Aziz 1979) with three-body DDD inter- 
action: simulation (Levesqueand Weis 1988) ( x); 
optimised CRS-MHNC (-). Difference Ag(r) = 
g(3) - g(2) of the radial distribution function with 
and without the DDD interaction: simulation (0); 
optimised CRS-MHNC (-). 

full multipolar potential is used instead of the Axilrod-Teller-Muto triple dipole one 
only a small change in ci3) is obtained. The Loubeyre form decreases the amplitude of 
ci3) with a very slight shift in k to smaller value. In table 3 we give the value of co, ci2) 
and ci3) for selected values of k both for the Aziz (1979) and for the Barker et a1 1974) 
pair potential and for the triple dipole three-body interaction. One can see that J2) and 
cy) are very insensitive to the chosen form of the pair interaction for all k-values, the 
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Table 3. Coefficients of the low-density expansion (11) and (14) of c(k)  for the Aziz (1979) 
(A) and for the Barker etal (1974) (B) pair interactions, together with the triple dipole three- 
body interaction. Fork > 10 nm-’ we give only the Aziz result, the Barker one being almost 
the same. The experimental data (E) have been obtained from a fit as discussed in the text 
and c f )  has been obtained by subtracting the Barker cjZi from cl.  

k c d k )  c y  x 102 C i 3 )  x 102 (c1 = cj2) + C p )  x lo2 
(nm-’) (nm3/atom) (nm6/atom2) (nm6/atom2) (nm6/atom2) 

~ 

0 A 
B 
E 

1 A 
B 

2 A 
B 
E 

4 A 
B 
E 

6 A 
B 
E 

8 A 
B 
E 

10 A 
B 
E 

12 A 
14 A 
16 A 
18 A 
20 A 
22 A 
24 A 
26 A 

0.1737 
0.1680 
0.168 2 0.007 
0.1565 
0.1517 
0.1145 
0.1118 

0.0065 
0.0074 

-0.0767 
- 0.0751 

-0.1053 
-0.1046 

-0.0844 
- 0.0847 

- 0.0387 
0.0051 
0.0298 
0.0319 
0.0184 
0.0006 

-0.0119 
-0.0151 

-1.387 
-1.376 

-1.367 
-1.356 
-1.307 
- 1.296 

- 1.092 
- 1.080 

-0.815 
-0.806 

-0.568 
-0.561 

-0.398 
-0.392 

-0.287 
-0.200 
-0.120 
-0.053 
-0.011 

0.004 
0.001 

-0.010 

-0.475 
-0.479 

(-0.55) 
-0.453 
-0.457 
-0.392 
-0.395 

(-0.70) 
-0.210 
-0.212 

(-0.55) 
-0.046 
-0.047 

(-0.27) 
0.042 
0.041 

0.060 
0.060 

(-0.04) 
0.038 
0.008 

-0.013 
-0.020 
-0.016 
-0.005 

0.005 
0.010 

(-0.02) 

-1.862 
-1.855 
-1.93 +. 0.05 
-1.820 
-1.813 
-1.699 
-1.691 
-2.00 t 0.15 
-1.302 
-1.293 
-1.63 t 0.08 
-0.861 
-0.853 
-1.08 +. 0.08 
-0.527 
-0.519 
-0.58 +. 0.04 
-0.338 
-0.332 
-0.43 * 0.04 
-0.249 
-0.192 
-0.133 
-0.074 
-0.027 
-0.001 

0.006 
0.000 

difference between the Aziz and the Barker potentials being well below 1%. This is not 
so for co(k )  ( = H , ( k ) )  at small k ;  for instance at k = 0 there is a 3.5% difference between 
the two pair potentials. The difference is even more pronounced in H$*) because it 
depends on (HoI2 (see equation (15)); for instance we find Hi*) = 0.0163 nm6/atoms2 
for Aziz and Hiz = 0.0145 nm6/atoms2 for Barker. Use of the later Aziz potential (Aziz 
et a1 1986) leads to only a negligible change in co and c1 and in what follows we have used 
the former one (Aziz 1979). We find that our value for cy’ (k)  differs from the one 
computed with Cummings’ program (Ram etal 1982). Since we have agreement between 
the ci3’(k) computed in two completely independent ways, directly from equation (16) 
and from the integral equation, we believe that our results are correct. 

In figure 2 and in table 3 we show also results obtained from the experimental data 
for the equation of state (Trappeniers et a1 1966, Michels et a1 1960) and the structure 
factor (Teitsma and Egelstaff 1980). Owing to the sensitivity of H o  and H I  on the precise 
form of the pair potential, it is preferable to analyse the data in terms of the c function. 
From the experimental equation-of-state data we estimate c(0) = [ l  - (lip/ 
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a ~ ~ ) ~ ( k ~ T ) - l ] / n  by taking the finite-difference’ratios from 0.6 to 16.5 atoms/nm3, and 
from a best quadratic fit in n of the data below 3 atoms/nm3 we obtain co(0) and ~ ~ ( 0 ) .  
The value of cl(0) is in agreement with the theoretical value within the experimental 
error when the triple dipole interaction is included and no preference can be given either 
to the Aziz potential or to the Barker one. The experimental co(0) is close to the Barker 
value and deviates from the Aziz one. This is because this last pair potential has used as 
fitting data, in addition to other quantities, second virial coefficient data that are larger 
than the value deduced from the Trappeniers et a1 (1966) data roughly in the same 
proportion of the Aziz and of the Barker value for co(0). On the other hand the later 
Aziz potential (Aziz et aZ1986), which gives essentially the same value for cl(0), does 
not make use of virial data for the determination of u2. This suggests that it might be 
worth while repeating the measurements at the lowest densities. 

In figure 2 the ‘experimental’ value of ci3’(0) is obtained by taking the difference 
between the experimental cl(0) and the Barker value for c(12)(0). The value of ci3)(O) is 
in good agreement with the triple dipole model, in particular when the higher multipolar 
terms are also included (figure 2). The Loubeyre model gives a too small value for 
ci3)(0). Also shown in figure 2 is an estimation of ci3’(k). This quantity was first obtained 
by Teitsma and Egelstaff (1980) from the measured c ( k )  as the difference between the 
slopes with respect to n of the best linear fit of the measured c (k )  and of the computed 
ci2’(k)  for n < 6. Egelstaff et a1 (1980) made Monte Carlo simulations of krypton at 
several densities at 297 K (which were later repeated and extended by Ram and Egelstaff 
(1984)), and showed that the range of density over which the data on c (k )  were linear 
varied with k and with the accuracy of the data being large at high k and falling 
significantly at lower k .  For example for k = 6 nm-’ and S(k)  determined to - l % ,  the 
linear range was 5 atoms/nm3. A revised estimate of ci3)(k)  was not published, however. 
As explained in the next section we have made calculations for the experimental densities 
of Teitsma and Egelstaff (1980) using the CRS-MHNC equation (Foiles et a1 1984) , and our 
S(k)  data agree with the above Monte Carlo (MC) data typically to -1%. Since this is 
within the errors on these MC data, we prefer our CRS-MHNC results and using them have 
re-evaluated the difference; using only the linear range in n we have estimated cj3’(k) 
from the best linear fit of ~ ( k ) ~ ~ , ~  - ~ ( k ) , , ~ ~  by using the Barker pair potential. These re- 
evaluated data are shown in figure 2 and in table 3, and they are shifted from the data of 
Teitsma and Egelstaff (1980) by amounts comparable to the errors. Nevertheless the 
new evaluation still shows important differences from the multipole model for k # 0. 

We also note that the quantity ~ ( k ) ~ ~ , ~  - ~ ( k ) , , ~ ~  should extrapolate to zero as n + 0, 
if the true pair potential had been used in the calculations. As pointed out by Egelstaff 
et a1 (1980), this rule is not satisfied exactly, suggesting that some subtle modification of 
the Aziz and Barker pair potentials is needed. It seems likely that such a modification 
will not change the estimated cj3) by a significant amount, and hence not materially alter 
our conclusion that either some additional terms are needed in the three-body potentials, 
or the experimental errors are significantly larger than quoted. 

4. From low to high density 

4.1. Integral equation 

The computation of H ( k )  from the virial expansion beyond the linear order in density is 
cumbersome and of limited use. and one has to resort either to simulation or to the 
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integral equation method for g(r).  The first advantage of the integral equation is that 
the numerical effort is much reduced compared to simulation so that one can easily 
explore different forms for the inter-atomic interaction and find small changes in the 
structure, which in simulation are obscured by the statistical noise. The second advantage 
is the absence of a size effect typical of simulation, with the resulting uncertainty in 
deducing the structure factor in particular at small k .  Therefore if the accuracy of the 
integral equation is comparable to the estimated precision of the experimental data on 
S(k)  it is actually advantageous to use the result of the integral equation for comparison 
with the experimental data in order to get information on the inter-atomic potential. 
With the development by Reatto and Tau (1987) of accurate integral equations for g(r)  
when three-body forces are present we believe that presently this is the case for simple 
one-component fluids as a result of detailed comparison (Celi et a1 1989) with accurate 
simulation results in a few benchmark cases, both in the case of two-body forces and in 
the case where the three-body DDD interaction is also present. Below we present some 
additional results in this respect. 

Here we are going to use a cross-over hyper-netted chain (CRS-MHNC) equation 
(Foiles et a1 1984) as generalised (Reatto and Tau 1987) when three-body forces are 
present. The pair distribution function is related to the two- and three-body potential 
by the relation 

g(r12 = exp[ - P u 2  ( r  12) + h(r 12) - c ( r 1 2 )  + C(r  12) + ECRS (r12  11 (17) 

where h(r)  = g(r) - 1, c(r)  is the direct correlation function defined by the Ornstein- 
Zernike (oz) relation 

the three-body vertex is given by 

and the cross-over model bridge function reads 

ECRS(r) = [l - l (r)]EHS(r;  d ) + l ( r ) [ - h ( r ) + l n g ( r ) ] .  (20) 

Here l(r)  is an empirical cross-over function, which vanishes in the core region and is 
unity at large distance. We have used the form (Reatto and Tau 1987) 

for r < R - w 

for R - w<r< R+ w 

for r> R + U. 

[1+ tanh{(r- R ) / [ w 2  - ( Y - Z ? ) ~ ] ~ ’ ~ } ]  (21) 

In this way for r < R - w the bridge function is approximated by the one of hard 
spheres EHS and for r > R + w EcRs(r) has the functional form corresponding to the 
mean spherical approximation for which c(r) = -Pu2(r). If only two-body forces are 
present one simply drops the C(r)  terms in equation (17). The model bridge function 
(20) depends on three parameters, the hard-sphere diameter d and the cross-over 
parameters R and w .  When only two-body forces are present one can develop (Celi et 
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al 1989) suitable Lado’s (1982) criteria which determine these parameters, the one 
derived from variation of d being 

and those derived from variation of R and w reading 

i d3r{k(r) - gHS(r)IEHS(Y) + [(dr))’ - (gHS(r))21/2 

(23) 
dL(r> 

- idr) In dr> - g H S  ( r )  In g H S  (r>l> = 

1 3r{[g(r> - gHS(r ) lEHS(r )  + - (gHS(r))21/2 

(24) 
a 4 4  

- Idr) In g ( r )  - g H S  In g H S  ( r ) l >  = 0. 

In the present computation we have used for E H ,  the hard-sphere bridge function 
deduced from the Verlet and Weis (1972) parametrisation of g H S  with the extension of 
Henderson and Grundke (1975) inside the core. When u3 is present we use the same 
cross-over parameters as determined for the two-body forces. Then equations (17)-(24) 
form a closed set of equations, which are solved by a standard numerical method (Reatto 
and Tau 1987). The exponential function in (19) has been expanded to linear order in 
u(3). 

As an example of the tests we have performed on the CRS-MHNC equation we consider 
the result of a recent accurate simulation (Levesque and Weis 1988) for dense Kr gas at 
T = 297 K and n = 13.84 atoms/nm3. In this simulation as pair potential the HFGKR 
potential by Aziz (1979), which has a well depth &/kB = 199.9 K and minimum of u2 at 
r ,  = 0.4012 nm, was truncated at L/2  = 0.992 nm and then used without and with the 
three-body DDD interaction (1). For the purpose of comparison we have solved the CRS- 
MHNC equation with these truncated potentials (the optimised parameters of the bridge 
function turn out to be d = 0.8751 r,, R = 1.75 Y, and w = 0.67 r,) and from figure 3 
one can see that the computed g ( r )  is almost indistinguishable from simulation, the 
typical deviations in g ( r )  being of the order of kO.01, just twice the estimated statistical 
error of the simulation. In the same figure we show the difference Ag = g(3) - g(’) 
between the pair distribution function when the DDD interaction is present and when it 
is absent. The effect of this three-body interaction is quite small (<0.5%) and only in 
the core region is it outside the statistical noise of simulation (-1.5%). The integral 
equation reproduces this effect quite well. Additional comparisons with simulation (Celi 
et a1 1989) indicate that the effect of the DDD interaction is reproduced with a similar 
accuracy also in the triple-point region. However, in the triple-point region the typical 
deviation in g(r )  between theory and simulation increases at the level of 20.03 (Celi et 
a11989) but the origin of this deviation is mainly due to the way the two-body potential 
is treated. Also we have computed S(k) for the 15 densities at 297 K used by Teitsma 
and Egelstaff (1980), and compared these data for 2 S k S 10 nm-’ with the Monte 
Carlo simulations of Ram and Egelstaff (1984) and found agreement to better than 1% , 
which is within the error on the simulations. 

If we exclude the immediate neighbourhood of the critical point, where critical 
fluctuations become important, the integral equation is even more accurate at lower 
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Figure 5. Difference AS(k)  = S(')(k) - S")(k) 
between the structure factor with and without the 
three-body interaction with the optimised CRS- 
MHNC equation for krypton at T =  297 K and 
n = 13.84 atoms/nm3: DDD (-); Loubeyre 
model with the increased strength IJ = 

298.2 X lO-*'erg ,my (--); QQQ with the 
increased strength Z 3  = 625.4 X erg cmlS 
(---).  Circles represent the difference between 
experiment and S( ' ) ,  using the Aziz U*. 

densities and it is exact at linear order in density. We conclude that the triplet CRS-MHNC 
equation can be used at the level of 1-2% to test the effects of a three-body interaction. 
For only the two-body interaction the equation is very accurate for temperatures above 
the critical one, and small deviations only occur in the triple-point region. 

4.2. Room-temperature isotherm 

Extensive measurements (Teitsma and Egelstaff 1980, Egelstaff et a1 1983) of the 
structure factor by neutron scattering along the room-temperature isotherm have 
already been used in order to test models for the inter-atomic interaction in Kr. Here 
we do the same but on the basis of the integral equation results and not of simulation so 
that we do not have to worry about size effects and we can study the small-k behaviour. 
We also test other forms for the three-body interaction. 

At  low density the agreement between theory and experiment is rather good and we 
shall return to this below. Starting from a density of order 6 atoms/nm3 some sizable 
deviations set in and in figure 4 we give the results for S(k)  at y1 = 6.19 and 13.84 atoms/ 
nm3, Here and in all other figures the experimental value at k = 0 is deduced from 
the thermodynamic measurements (Trappeniers et a1 1966, Michels et al 1960). The 
estimated error (Teitsma and Egelstaff 1980) of the neutron scattering measurements 
at n = 6.19 is below the size of the symbols. The theoretical results differ slightly 
from the ones reported previously (Reatto and Tau 1987) because now the cross-over 
parameters are fully optimised. The k = 0 value is well reproduced by theory when the 
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DDD interaction is included and at larger k the effect of the three-body interaction is very 
small. At  the smaller density of figure 4 the deviation between theory and neutron data 
is significant only below k = 5 nm-' but at the larger density the deviation is present over 
most of the measured k-range. This is shown more clearly in figure 5 ,  where the difference 
AS(k)  between the experimental data at 13.84 atoms/nm3 and the theoretical result for 
the Aziz potential is shown. If this potential were the exact two-body interaction, this 
difference would be the effect of many-body forces in krypton at this high density. In 
the same figure we plot the theoretical AS(k)  for some models of the three-body 
interaction. For the correct model of many-body forces this AS(k)  should coincide with 
the circles. It is clear that the DDD three-body interaction is reasonable for k = 0 but it 
is inadequate at finite k .  

We have considered two other forms for the three-body interaction. The first is the 
modified DDD form (3), but this gives an effect on S(k)  even smaller than the DDD form 
and the compressibility is not correct (this is not shown in the figure). In order to obviate 
this we have increased the strength v from the value of table 2 to the value v = 
298.2 x erg cm9 so that the third virial coefficient for the equation of state at T = 
297 K has the same value as the pure DDD form. The effect on S(k)  remains small as 
shown in figure 5 .  We have also modified the DDD form (1) in a different way by an 
exponential damping of u3 at short distance, as suggested by Bulski and Chalasinski 
(1987), but also in this case the effect on S(k)  remains small. All these forms of u3 have 
the same angular dependence of the DDD form. Since a two-body quadrupolar interaction 
has a stronger effect on the structure (Patey and Valleau 1976) than the dipolar one, we 
have considered a pure triple quadrupole interaction, i.e. u3 = Z ( Q Q Q ) ~ W ( Q Q Q ) ~  (see 
equation (2)), with an increased strength ~ ( Q Q Q ) ,  = 62545.9 x erg cm15 such that 
it gives the correct value of the third virial coefficient at T = 297 K. We see from figure 
5 that this u3 is more efficient in modifying S(k)  but the effect is very different from that 
needed to bring agreement with experiment. 

None of these models for u3 are able to explain the observed S ( k )  at high density. 
The magnitude of the observed deviations is so large that we do not believe it is likely 
that its origin is due to some defect of the model pair interaction like the Aziz or the 
Barker one, but it should be due to additional many-body forces unless there is some 
additional source of error in the experimental data. In particular we have considered 
the possibility that the calibration of the absolute scale for neutron scattering at the 
higher densities (Egelstaff et a1 1983) was slightly in error. A change of this scale can 
improve the agreement with the theoretical result in a restricted region of k-values, for 
instance in the region of the main maximum of S ( k ) ,  but it is not possible to obtain 
agreement over the full k-range. 

A characteristic feature of S(k)  is the position k,  of the main maximum of S ( k )  and 
this is plotted in figure 6 as function of density. The three-body DDD interaction displaces 
k ,  slightly to a smaller value as a consequence of a small outward displacement of the 
first shell of neighbours. The theory is in good agreement with the result of simulation 
using the DDD model. In fact at the density 13.84 atoms/nm3 we find k, = 18.19 nm-I 
and from simulation (Levesque and Weis 1988) one gets k,  = 18.17 nm-l. At small 
density the experimental data are not meaningful owing to the large uncertainty in the 
determination of k ,  because the maximum is very broad, and there is agreement (within 
large error) in the intermrdiate-density region. But deviations are present at high 
density, which may be genuine and indicate that additional many-body forces induce an 
outward displacement of the first shell of neighbours of order of 1 %, 

A useful way of presenting the large number of data in a way that puts more in 
evidence the effects of the inter-atomic interaction is by a plot of c(k)  as a function of 



Three-body potential effects in the structure of fluid krypton 7143 

: 18 
E z 

17 
3 6 9 12 15 

n (atoms/nm3i 

Figure 6. Position of the maximum of S ( k )  
for krypton at T = 297 K as a function of 
density: experiments (Teitsma and Egel- 
staff 1980, Egelstaff er a1 1983) (0); opti- 
mised CRS-MHNC for Barker pair 
interaction with (U) and without (X )  the 
DDD interaction. The Aziz u2 gives essen- 
tially the same results. 

density at fixed k. This function is simply given by c(k) = [l - S-'(k)]/n. The math- 
ematical form of this function makes the errors large at small and large n. We extend in 
figure 7 the presentation of Teitsma and Egelstaff (1980) to larger densities. In this figure 
we show the actual c(k) versus n for several values of k for the Barker potential with and 
without the three-body DDD interaction. Apart from k = 0 the Aziz u2 gives essentially 
indistinguishable results and we plot the results for Barker u2 because with this potential 
we have performed a more extended series of computations. At k = 0 it is important to 
include the three-body potential in order to get close to experiment. The remaining 
discrepancies for k = 0 are rather small, becoming appreciable only at the highest 
densities. Larger differences are visible at higher k and these increase with increasing 
density as expected. Above about 6 atoms/nm3 the deviation between theory and 
experiment increases rapidly with density and it is well outside the joint uncertainty of 
the theory and of experiment, and the discrepancy is present for all k-values. The 
difference Ac(k) between the pair result for c(k) and the experimental result as function 
of n shows the effect of many-body forces if the pair interaction is the exact one. In figure 
7(b ) ,  c(k) deducedfrom simulation with the DDD interaction and the Aziz u2 at n = 13.84 
atoms/nm3 is also shown. 

We consider now more closely the effect of many-body forces on c(k). The most 
appropriate comparison with experiment is for k = 0, partly because these data are an 
integral over all space (and so at low densities should involve mainly the long-range 
interactions) and partly because the experimental results are more accurate than at 
higher k. In the first place we show as a full curve in figure 8 the difference Athc(0) 
between the pair model result and the result obtained when also the three-body DDD 
interaction is included. The CRS-MHNC method has been used and in figure 8 we show 
the result for the Barker interaction. We have performed the same computation with 
the Aziz potential and obtained results essentially indistinguishable from the Barker 
ones for Athc(0). Therefore we conclude that Athc(0) is essentially independent of which 
pair interaction is used and this extends up to freezing density, an observation we have 
already made on the basis of the virial expansion results. 

Then we plot in figure 8 the difference A,,,c(O) between the pair model calculation 
and the experimental value for both models of the pair interaction. It is clear that A,,,c(O) 
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Figure 7. (a) Plots of c(k)  as a function of density at k = 0, 2 and 4 nm-' for krypton at 
T =  297 K: experiment (0); optimised CRS-MHNC for Barker u2 (---) and for Barker plus 
DDD (-), (b)  As in (a) at k = 6 ,8  and 10 nm-'. In  addition: simulation result (Levesque 
and Weis 1988) at one density for HFGKR pair potential (Aziz 1979) plus DDD ( x) ,  

for the Aziz potential does not extrapolate to zero at k = 0 and this is a reflection of the 
discrepancy between the second virial coefficient of the Aziz potential and the value 
implied by the equation of state we are using, as discussed in the previous section. This 
explains the almost constant shift between A,,,c(O) for Aziz and for Barker up to a 
density of about 6 atoms/nm3. The discrepancy between the low-density behaviour of 
the experimental data we are using and virial coefficient measurements is small but 
significant for our purpose. In any case we can say that there is clear evidence for the 
presence of many-body forces that are repulsive on average. Up to a density of order 
of 10 atoms/nm3 the triple dipole interaction gives a reasonable description of the 
compressibility of the system but the discrepancies are increased when the higher-order 
multipole terms are added. In this respect it is interesting to notice that Aexpc(0) shows 
oscillations around Athc(0) in the density range 0-10 atoms/nm3. This has an interesting 
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Figure 8. Difference Ac(0) = ~ ( " ( 0 )  - d3)(0)  between the optimised CRS-MHNC c(0) for the 
two-body model interaction and the two- plus three-body model (Barker U * ) :  DDD model 
(-) and Loubeyre model with increased strength as in figure 5 (A).  In the inset the virial 
expansion results are also shown as straight lines: DDD model (-) and 
DDD + DDQ + DQQ + QQQ model (---).  Additional symbols represent the difference 
between the pair model result and experiment (Trappeniers et a1 1966): Barker u2 (0) and 
Aziz u2 ( x). 

Table 4. Coefficients of the best fit of c(0) with equation ( 2 5 ) .  Theoretical results are from 
the CRS-MHNC equation for the indicated interactions and experimental result is deduced 
from Trappeniers et a1 (1966) as discussed in the text. 

a p x 102 y x lo4 
(nm3/atom) (nm6/atom2) (nm9/atom3) 

Barker 0.1680 - 1.368 -3.48 
Barker + DDD 0.1678 -1.813 -1.69 
Experiment 0.1683 - 1.930 +0.73 

origin; it is due to the fact that the linear range in density is much larger for the 
experimental data than for any of the theoretical results. We have fitted the experimental 
and the theoretical data for c(0) up to n = 3 atoms/nm3 with a quadratic form in density 

c(0) = a + Pn + yn2 (25 ) 
and the resulting coefficients are given in table 4. If in this density range the terms of 
hi her order in n give a negligible contribution one should find that a = co(0), /3 = 

only small deviations from these equalities and we conclude that this density range is 
adequate to assume that the value of y gives an estimation of ~ ~ ( 0 ) .  It can be noticed that 
the three-body interaction decreases the value of lyl by more than a factor of 2 but the 
experimental value is significantly smaller and of opposite sign, again pointing to stronger 
many-body forces. The noise of the data leaves a rather large uncertainty on the value 
of y and new data would be useful. 

The deviation between Athc(0) and Aexpc(0) increases rapidly with density above 
10 atoms/nm3 and this deviation is much larger than the difference between the Barker 
and Aziz results. We have evidence that this deviation is not due to the multipolar terms 
beyond the DDD interaction. The DDQ, DQQ and QQQ interactions only give a small 

c', 8 (0) when the pair interaction is used and /3 = c,(0) when also d3) is used. One notices 
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contribution at low density as already shown in figure 2 (c(:)(O) changes from 
0.479 X nm6/atoms2 due to these multipolar terms). 
At larger density we have not performed a computation with CRS-MHNC with the full 
multipolar interaction but our computation at density 13.84 atoms/nm3 with the QQQ 
interaction allows us to estimate that the multipolar terms change Athc(0) by only a few 
per cent. We conclude that at large density there is evidence for additional repulsive 
many-body forces. 

We have plotted Aexpc(k) for the k-values shown in figure 7 and significant differences 
from A,,c(k) are found for all values of k. As can be seen from figure 7 these differences 
change sign between k = 4 and 10 A-*. Again they indicate that additional short-ranged 
forces are needed. 

nm6/atoms2 to 0.513 x 

4.3. The 200 K region 

As an additional test of the models of the inter-atomic interaction we have computed 
S(k)  at some temperatures in the region of 200 K. The comparison with the Fredrikze 
(1987) data in the liquid phase at T = 200 K has already been presented (Reatto and 
Tau 1987) and here we present a comparison at higher T and lower density. The S(k)  at 
T = 220 K and n = 4.89 atoms/nm3 is shown in figure 9(a). Only the theoretical result, 
which includes the DDD interaction, is presented because this thermodynamic state is 
inside the spinodal line of the CRS-MHNC equation for the pure Aziz potential. At k = 0 
(out of scale) the theoretical value S(0) = 8.21 is in reasonable agreement with the 
thermodynamic value (Fredrikze 1987) S(0) = 7.54. At finite k the deviation between 
experiment and theory is significant over all the measured k-range, there is both a shift 
and a different amplitude of the oscillations of S(k) and the experimental S(k)  lies well 
below the theoretical one fork < 10 nm-'. However the k-scale used by Fredrikze (1987) 
is not exact (Fredrikze 1988) and some of the differences shown are due to this error. 
We have checked the accuracy of the CRS-MHNC equation by performing a molecular 
dynamic computation and the agreement is satisfactory also in this case. 

Finally we present in figure 9(b) a comparison with the data of Youden (1987) for a 
similar thermodynamic state, T = 237 K and n = 5.582 atoms/nm3. On this scale the 
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agreement is good and of the same kind as that for the room-temperature isotherm at 
intermediate density (figure 4(a)). 

5. Discussion 

We have used the low-density expansion of the correlation functions and a new integral 
equation to evaluate both the pair correlation function and the structure factor for 
systems of atoms interacting with both pair and many-body potentials. By comparison 
with computer simulation data the integral equation results were shown to be accurate 
to about 1%, up to densities about twice the critical density and for temperatures 
roughlyin therange0.7 s kgT/E s 1.5. With this tool, comparisons between theoretical 
predictions and experimental data become possible from k = 0 to all experimental 
k-values and for the complete range of experimental densities. Consequently it was 
possible to test several models for many-body forces in this way, without generating 
excessive demands for computer time. This is one of the first computations with the 
integral equation method in which realistic models of the inter-atomic forces have been 
used in a dielectric fluid, and this is because we are now able to take into account also 
the three-body interaction with high accuracy. The very wide region of thermodynamic 
states in which the CRS-MHNC equation (including three-body forces) is accurate allows 
a severe test of any model of the inter-atomic forces in a monatomic fluid. 

In the low-density regime at room temperature our findings confirm previous evi- 
dence (Teitsma and Egelstaff 1980) for the presence of many-body forces in krypton. 
The multipolar expression for the three-body interaction gives a satisfactory rep- 
resentation of the thermodynamicvalue for c(0) but deviations are found in c(k)  at finite 
k .  Loubeyre’s model for u3 makes the results worse at both finite k and k = 0. Some 
subtle deviations in the compressibility data are found between experiment and the 
multipolar model. This suggests that additional many-body forces are present but some 
inconsistency between different equation-of-state data at low density points out that we 
need additional experimental data. Our results also indicate that in the search for 
signatures of many-body forces it is preferable to analyse the data in terms of c(k) and 
not of H(k). This is because the dependence of c(k)  on the detailed shape of u2 is mainly 
contained in its low-density limit c,(k) but this is not so for H(k). With respect to the 
pair potential we can say that the Barker and the Aziz u2 give very similar results for 
c(k) at finite k, the deviations being well below the present experimental accuracy. Some 
deviations between the two c(k) are only found at small k and at k = 0 the Barker u2 is 
in better agreement with the experimental data (Trappeniers et a1 1966, Michels et a1 
1960) we have used. However, we cannot draw a conclusion from this in view of the fact 
that the Aziz u2 is in good agreement with some other experiments (Aziz 1979). 

When we consider a wider density range, say up to 10 atoms/nm3, we find substantial 
agreement between experiment and theory but here the evidence for three-body effects 
is limited because the effect of u3 on c(k)  is small. Nevertheless the plots of Ac(k)  for 
experiment and theory show differences which require three-body terms beyond the 
multipolar series. Above this density, theory and experiment start to diverge. The 
deviations increase very strongly with density and are present at all k, k = 0 included. 
This is a signature for additional many-body forces. None of the models for u3 we have 
considered improves the situation. The k = Oresult indicates that these additional many- 
body forces are repulsive on average and this is in disagreement with Loubeyre’s model 
for u3. In addition these short-range many-body forces should have a comparatively 
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stronger effect than the triple dipole one on the structure of the system and this can only 
be obtained if the angular dependence of uj at short distance differs from the triple 
dipole one. The other possibility is that fourth- and higher-order many-body interactions 
become important at high density. It is possible that these two options could be distin- 
guished experimentally by high-precision measurements as a function of density. 

It is evident that this is a time-consuming, sophisticated field, and that a proper 
understanding of even the simplest fluid will be impossible without a reasonably detailed 
treatment of many-body forces. This should not be surprising because atomic polaris- 
ability plays such an important role in the treatment of pair forces. We hope that this 
paper has demonstrated new, and perhaps successful, methods for addressing this 
problem. 
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